Independent Instances for Some Undecidable Problems
نویسندگان
چکیده
— In this note we prove the existence of effectively independent instances (with respect to an arbitrary recursively axiomatizable, consistent, intuitively true and sufficiently rich theory) for some well-known undecidable problems including the Emptiness Problem, the Finiteness Problem, the Totality Problem, the Halting Problem and the Post Correspondence Problem. Applications in the Theory of Diophantine Equations and in the Formai Language Theory will be analyzed. Résumé. — Dans cette note nous prouvons Vexistence, pour quelques problèmes indècidables bien connus, d'instances indépendants (relativement à une théorie récursivement axiomatisable, consistante, intuitivement vraie et suffisamment riche). Les problèmes traités comprennent le problème de la vacuité, de lafinitude, de la totalité, de l'arrêt et le problème de correspondance de Post. On analyse les applications à la théorie des équations diophantiennes et des langages formels.
منابع مشابه
Asymptotic Proportion of Hard Instances of the Halting Problem
Although the halting problem is undecidable, imperfect testers that fail on some instances are possible. Such instances are called hard for the tester. One variant of imperfect testers replies “I don’t know” on hard instances, another variant fails to halt, and yet another replies incorrectly “yes” or “no”. Also the halting problem has three variants. A tester may test halting on the empty inpu...
متن کاملSchemata of SMT-Problems
A logic is devised for reasoning about iterated schemata of SMT problems. The satis ability problem is shown to be undecidable for this logic, but we present a proof procedure that is sound, complete w.r.t. satis ability and terminating for a precisely characterized class of problems. It is parameterized by an external procedure (used as a black box) for testing the satis ability of ground inst...
متن کاملComputational Complexity of some Optimization Problems in Planning
Automated planning is known to be computationally hard in the general case. Propositional planning is PSPACE-complete and first-order planning is undecidable. One method for analyzing the computational complexity of planning is to study restricted subsets of planning instances, with the aim of differentiating instances with varying complexity. We use this methodology for studying the computatio...
متن کاملUndecidability Bounds for Integer Matrices Using Claus Instances
There are several known undecidability problems for 3×3 integer matrices the proof of which uses a reduction from the Post Correspondence Problem (PCP). We establish new lower bounds in the numbers of matrices for the mortality, zero in left upper corner, vector reachability, matrix reachability, scaler reachability and freeness problems. Also, we give a short proof for a strengthened result du...
متن کاملQPLIB: A Library of Quadratic Programming Instances
This paper describes a new instance library for Quadratic Programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function, the constrains, or both are quadratic. QP is a very “varied” class of problems, comprising sub-classes of problems ranging from trivial to undecidable. Solution methods for QP are very diverse, ranging from entirely co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ITA
دوره 17 شماره
صفحات -
تاریخ انتشار 1983